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A recently introduced particle-based model for fluid flow, called stochastic rotation dynamics, can be made
Galilean invariant by introducing a random shift of the computational grid before collisions. In this paper, it is
shown how the Green-Kubo relations derived previously can be resummed to obtain exact expressions for the
collisional contributions to the transport coefficients. It is also shown that the collisional contribution to the
microscopic stress tensor is not symmetric, and that this leads to an additional viscosity. The resulting identi-
fication of the transport coefficients for the hydrodynamic modes is discussed in detail, and it is shown that this
does not impose restrictions on the applicability of the model. The collisional contribution to the thermal
conductivity, which becomes important for small mean free path and small average particle number per cell, is
also derived.
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I. INTRODUCTION

Particle-based simulation techniques have recently be-
come an attractive alternative to more traditional methods for
the coarse-grained modeling of a fluctuating solvent. A par-
ticularly appealing algorithm, introduced by Malevanets and
Kapral �1,2�, and later called multiparticle collision dynam-
ics �3–6� or stochastic rotation dynamics �SRD� �7–14� pro-
vides a “hydrodynamic heat bath,” the details of which are
not resolved, but which provides the correct hydrodynamic
interactions and thermal fluctuations. The coarse-grained dy-
namics ignores molecular details, but enables simulations
which span much longer time scales than can be addressed
using molecular dynamics techniques. It has been used to
study the behavior of polymers �5,15,16�, colloids �2,6,17�
�including sedimentation �14,18��, vesicles in shear flow
�19�, and complex fluids �20,21�. In addition to SRD’s nu-
merical advantages, its simplicity has made it possible to
obtain analytic expressions for the transport coefficients
which are valid for both large and small mean-free paths,
something which is very difficult to do for other mesoscale
particle-based algorithms.

In its original form �1,2�, the SRD algorithm was not Gal-
ilean invariant at low temperatures, where the mean-free
path, �, is smaller than the cell size a. However, Galilean
invariance can be restored by introducing a random shift
�7,8� of the computational grid before every multiparticle
interaction. In addition to restoring Galilean invariance, this
grid shifting procedure accelerates momentum transfer be-
tween cells and leads to a collisional contribution to the
transport coefficients. Two approaches have been used to
analyze the resulting algorithm and determine the shear vis-
cosity and thermal diffusivity. In Refs. �12,13�, a nonequilib-
rium kinetic approach is used to derive the transport coeffi-
cients. In Refs. �7,8�, a discrete-time projection operator
technique was utilized to obtain Green-Kubo relations
�22–24� for the model’s transport coefficients, and explicit
expressions for the transport coefficients were derived in ac-
companying papers �9–11�. The two approaches are comple-

mentary and, for the most part, agree in their conclusions.
The first is rather straightforward and intuitively appealing,
but makes several assumptions which are not easily verified.
The current approach justifies in detail several assumptions
used in the nonequilibrium calculations of Refs. �12,13�; it
can also be used to analyze the transport coefficients of the
longitudinal modes, namely the bulk viscosity and thermal
diffusivity, which are hard to calculate analytically in the
nonequilibrium approach �13�. Note, in particular, that the
collisional contribution to the thermal conductivity has not
yet been determined using the nonequilibrium methods.

In this paper, we show in detail how the time series in the
Green-Kubo relations for the transport coefficients can be
resummed in such a way as to eliminate all dependence on
the space-fixed cell coordinates of the particles �25�. This
leads to a dramatic simplification of the sums, and enables an
exact evaluation of the collisional contribution to the trans-
port coefficients. It is also shown that there are only pure
kinetic and collision contributions to the transport coeffi-
cients, as was implicitly assumed in the calculations of Refs.
�12,13�. Explicit expressions for the collisional contributions
to the viscosities and the thermal diffusivity are given, and
the consequences of the fact that the collisional contribution
to the microscopic stress tensor is not symmetric are dis-
cussed in detail. In particular, it is shown that this lack of
symmetry leads to a slight change in the longitudinal viscous
transport coefficient. The hydrodynamic modes are, however,
not affected, and it does not impact on the applicability and
stability of the method, even at low temperature.

II. SRD MODEL

In the SRD algorithm, the fluid is modeled by particles
with continuous spatial coordinates ri�t� and velocities vi�t�.
The system is coarse-grained into the cells of a regular lattice
with no restriction on the number of particles in a cell. The
evolution of the system consists of two steps: streaming and
collision. In the streaming step, the coordinate of each par-
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ticle is incremented by its displacement during the time step,
�. Collisions are modeled by a simultaneous stochastic rota-
tion of the relative velocities of every particle in each cell. As
discussed in Refs. �7,8�, a random shift of the particle coor-
dinates before the collision step is required to ensure Gal-
ilean invariance. All particles are shifted by the same random
vector with components in the interval �−a /2 ,a /2� before
the collision step. Particles are then shifted back to their
original positions after the collision. If we denote the cell
coordinate of the shifted particle i by �i

s, the algorithm is
summarized in the equations

ri�t + �� = ri�t� + �vi�t� , �1�

vi�t + �� = u��i
s�t + ��� + ���i

s�t + ��� · �vi�t� − u��i
s�t + ���� ,

�2�

where ���i
s� denotes a stochastic rotation matrix, and

u��i
s��1/M�k��svk is the mean velocity of the particles in

cell �s. All particles in the cell are subject to the same rota-
tion, but the rotations in different cells are statistically inde-
pendent. There is a great deal of freedom in how the rotation
step is implemented, and any stochastic rotation matrix con-
sistent with detailed balance can be used. In two dimensions,
the stochastic rotation matrix, �, is typically taken to be a
rotation by an angle ±�, with probability 1 /2 �see Refs.
�7–9��. In three dimensions, two collision rules have been
considered. In the first �model A in Ref. �10��, one performs
rotations by an angle � about a randomly chosen direction,
where all orientations of the random axis occur with equal
probability. In the second �model B in Ref. �10��, rotations
are performed about one of three orthogonal rotation axes,
i.e., x-, y-, and z axes of a Cartesian coordinate system. At
each collision step one of these three axes is chosen at ran-
dom, and a rotation by an angle ±� is then performed, where
the sign is chosen at random.

III. TRANSPORT COEFFICIENTS

Because of the cell structure introduced to define coarse-
grained collisions, angular momentum is not conserved in a
collision �26,27�. As a consequence, the macroscopic viscous
stress tensor is not, in general, a symmetric function of the
derivatives V�����v�. Its general form can be determined
as follows. Both the macroscopic viscous stress tensor, �̂��,
and the velocity gradient tensor, V�� which appear in the
Navier-Stokes equation, are rank two tensors. If the velocity
gradients are small, we can assume—as is generally done—
that the momentum transfer due to viscosity depends only on
the first derivatives of the velocity, so that

�̂�� = C���	V�	. �3�

Symmetry arguments can be used to reduce the number of
independent elements in the compliance tensor C���	. Be-
cause of the simple cubic grid structure used in the algo-
rithm, we have at least cubic symmetry. In this case, it can be
shown �27� that the most general form for C���	 is

C���	/	 = a
��
�	 + b
��
�	 + c
�	
�� + �����	, �4�

where �J is the rank four unit tensor �27�, a, b, c, and � are
viscosity coefficients, and 	 is the mass density of the fluid.
It follows that

�̂��/	 = a
����v� + b��v� + c��v� + �����	��v	

= 
1	��v� + ��v� −
2

d

����v�
 + 
2���v� − ��v��

+ �
����v� + �����	��v	, �5�

with kinematic shear viscosities 
1��b+c� /2, 
2��c
−b� /2, and bulk viscosity �=a+ �b+c� /d, where d is the
spatial dimension. Here, 
2 is the viscous transport coeffi-
cient associated with the nonsymmetric part of the stress ten-
sor, and � is a viscosity coefficient related to a possible lack
of full rotational symmetry; both 
2 and � are usually zero in
simple fluids. If we define a new tensor from the diagonal
elements of V��, namely R�������	V�	, the resulting form
of the momentum equation for a fluid reads

	� �v

�t
+ �v · ��v� = − �p + � · �̂J �6�

=− �p + 	�
1 + 
2��v

+ 			1 −
2

d


1 − 
2 + �
 � �� · v�

+ � � · RJ , �7�

where p is the pressure. It can be seen from Eq. �7� that
effective shear viscosity is 
=
1+
2. In momentum space,
the resulting linearized Navier-Stokes equation can be
written as

�tv��k� = −
��p

	
+ ����
1,
2,�,�;k̂�v��k� , �8�

where

����
1,
2,�,�;k̂� � 
1	
�� +
d − 2

d
k̂�k̂�
 + 
2�
�� − k̂�k̂��

+ �k̂�k̂� + �k̂�k̂	����	. �9�

����
1 ,
2 ,� ,� ; k̂� is the matrix of viscous transport coeffi-
cients. In a simple liquid, �=0 �because of invariance with
respect to infinitesimal rotations�, 
=
1, and 
2=0 �because
the stress tensor is symmetric in ��v��. In this case, Eq. �9�
reduces to the well-known form �8�

����
1,
2,�,�;k̂� = 
	
�� +
d − 2

d
k̂�k̂�
 + �k̂�k̂�. �10�

As shown in Ref. �8�, the discrete Green-Kubo �GK�
relation
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����
1,
2,�,�;k̂� �
�

NkBT
�
n=0

�

�
k̂�����0��k̂�������n��� ,

�11�

for the SRD model can be used to express the matrix of
viscous transport coefficients in terms of a sum of time cor-

relation functions of the reduced fluxes I1+��k̂ , t�

k̂�����t� � I1+��k̂,t� =
1

�
�

j

	− �v j��t�k̂ · �� j�t�

+ �v j��t�k̂ · �� j
s�t�� +

�k̂�

d
v j

2�t�
 , �12�

for �=1, . . . ,d, with �� j�n��=� j��n+1���−� j�n��, �� j
s�n��

=� j��n+1���−� j
s��n+1���, and �vxj�n��=vxj��n+1���

−vxj�n��. � j�n�� is the cell coordinate of particle j at time n�,
while � j

s is its cell coordinate in the �stochastically� shifted
frame. The prime on the sum indicates that the t=0 term has
the relative weight 1 /2. The sum in Eq. �12� runs over all N
particles of the system.

The corresponding expression for the thermal diffusivity
is �8�

DT =
�

cpNkBT2 �
n=0

�

�
k̂����0��k̂������n��� , �13�

with the energy flux

���n�� =
1

�
�

j
��cvT − v j

2�n��/2��� j��n��

−
1

2
�v j

2�n���� j�
s �n�� + �kBTv j��n��� , �14�

where cv=dkB /2 is the specific heat per particle at constant
volume of an ideal gas and �v j

2�n��=v j
2��n+1���−v j

2�n��.
The thermal conductivity, �, is related to DT by �=	cpDT.
Here and in the following, we have set the particle mass
equal to 1.

IV. RESUMMED GREEN-KUBO RELATIONS

The straightforward evaluation of the GK relations
�22–24� presented in Ref. �9� leads to three contributions to
the transport coefficients, which were called the kinetic, ro-
tational �or collisional�, and mixed terms. The term “rota-
tional” and the superscript “rot” refer to contributions from
the collisions—stochastic rotations of the relative particle
velocities—in the SRD model. For large mean-free path, �
�a, �=��kBT, the assumption of molecular chaos is valid,
and the kinetic contribution could be determined explicitly.
For mean-free paths � smaller than the cell size a, however,
there were finite cell size corrections, and it was not possible
to sum these contributions in a controlled fashion. The origin
of the problem was the explicit appearance of �� in the
stress correlation functions.

In fact, the appearance of �� is troubling, since one would
not expect this if the cell shifting procedure really does re-

store Galilean invariance. The key to resolving this dilemma
is to realize that a proper resummation of the GK relations
removes this dependence. Consider first the time series

�n=0
� �k̂�����n��. By canceling �-dependent terms in succes-

sive contributions to this series, it can be shown that

�
n=0

�

�k̂�����n�� =
1

2
k̂��A���0� + A������ + �

n=0

�

�k̂��̄���n�� ,

�15�

where �̄���n��� �̄��
kin�n��+ �̄��

rot�n��, with

�̄��
kin�n�� = − �

j

�v j��n��v j��n�� − 
��v j
2�t�/d� ,

�̄��
rot�n�� = −

1

�
�

j
v j��n��Bj��n�� , �16�

A����� �
1

�
�

j
v j������ j�

s �0� , �17�

and

Bj��n�� � � j�
s ��n + 1��� − � j�

s �n�� − �v j��n�� = �� j��n��

− �� j�
s �n�� + �� j�

s ��n − 1��� − �v j��n�� . �18�

Bj� is a new stochastic variable which has very simple tem-
poral correlations describing the geometrical properties of
the underlying lattice.

Similarly, it can be shown that

����0� = A���0� − A����� + �̄���0� . �19�

Using these results, the Green-Kubo relation �11� for the vis-
cous transport coefficients can be written as the sum of two
terms

�k̂�k̂��

NkBT � 1

2
�A���0�A����0� − A�����A�������

+
1

2
�A���0�A������ − A�����A����0�� +

1

2
�A����0�

+ A��������̄�bda�0� + �A���0� − A�������
n=0

�

��̄����n��� ,

�20�

and

�

NkBT
�
n=0

�

�
k̂��̄���0��k̂���̄����n��� . �21�

Stationarity implies that the first term in Eq. �20� equals zero,
and that the last term reduces to
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�A���0� − A�������
n=0

�

��̄����n��

= −
1

2
�A����� + A���0���̄����0� . �22�

Stationarity and time-reversal invariance imply that the re-
maining term also vanishes. Alternatively, the explicit form
of A��, Eq. �17�, can be used to show that this term vanishes.
The expression in Eq. �20� is therefore zero, so that the
Green-Kubo relation for the viscous transport coefficients is
still given by �11�, but with the stress tensor �̄��.

A similar calculation shows that the thermal diffusivity is
given by �13�, with ���n�� replaced by �̄��n��� �̄�

kin�n��
+ �̄�

rot�n��, with

�̄�
kin�n�� = − �

j
�−

1

2
v j

2�n��v j��n�� + kBTv j��n��� ,

�̄�
rot�n�� =

1

2�
�

j
v j

2�n��Bj��n�� . �23�

Note that the new stress tensors do not depend on �, the
space-fixed cell coordinates of the particles.

An alternative way to derive these results is to note that
time-reversal invariance can be used to rewrite �11� and �13�
as sums from −� to +�. In this way, the discussion in the
preceding paragraph of the n=0 term can be avoided.

V. CORRELATIONS INVOLVING B’S

Bi��n�� is the � component of the difference between the
change in the shifted cell coordinates during one streaming
step and the actual distance traveled, �vi�. It has a number of
important properties which simplify the calculation of the
transport coefficients. In particular, it will be shown that all
stress-stress correlation functions involving one B in
the GK relations for the transport coefficients are zero, so

that, for example, ����
1 ,
2 ,� ,� ; k̂�=���
kin�
1 ,
2 ,� ,� ; k̂�

+���
rot�
1 ,
2 ,� ,� ; k̂�, with

���
kin�
1,
2,�,�;k̂� �

�

NkBT
�
n=0

�

�
k̂��̄��
kin�0��k̂���̄���

kin �n��� ,

�24�

and

���
rot�
1,
2,�,�;k̂� �

�

NkBT
�
n=0

�

�
k̂��̄��
rot�0��k̂���̄���

rot �n��� .

�25�

The kinetic contributions to the viscosity were calculated
previously in both two dimensions �2D� �9� and three dimen-
sions �3D� �10�, and will not be discussed here. Properties of
the B correlations which enable an explicit evaluation of
expression �25� are derived in the following subsections.

A. Factorization of B−v correlations

The first one, 
Bi��n���=0 for arbitrary n, implies that on
average, the distance traveled by a particle during one time
step is the average of difference of the shifted cell coordi-
nates before and after the streaming step. This can be shown
as follows. Consider


Bix�0�� = 
�ix
s ��� − �ix

s �0� − �vix�0�� . �26�

The ensemble average includes averaging over the initial co-
ordinates and velocities of all particles, as well as averages
over the shift and collision matrix at each time step. Without
loss of generality, assume that at t=0, the x coordinate of
particle i is in the interval �0,a�. For na�X�xi�0�
+�vix�0�� �n+1�a, the average of �ix

s �����ix���−��ix
s �0�

over the random shift 
 at time �, denoted by 
 �
�
, at fixed

particle coordinate and velocity, is �see Eq. �31� of Ref. �9��


�ix
s �����X�
�

= na − 
���ix
s �X�
�

= X − a/2, �27�

so that


Bix�0�� = 
− a/2 + xi�0� − �ix
s �0�� . �28�

Finally, averaging over the shift at t=0 gives 
�ix
s �0��x�
0

=−a /2+xi�0�, so that 
Bix�0��=0.
Similar arguments can be used to show that the

cross terms in the GK expressions for the transport
coefficients involving one B are zero. For the shear viscosity,
these terms involve correlations of the form

v jx�n��v jy�n��vix�m��Biy�m���. Consider first the case n=m
=0. Performing the average over the shift 
 at t=�, the av-
erage reduces to


v jx�0�v jy�0�vix�0��yi�0� − a/2 − �iy
s �0��� . �29�

The average over the shift at t=0 yields zero because it does
not affect the particle’s initial velocities or positions. Con-
sider now m=0 and n=1. In this case, first perform the av-
erage over the random shift at t=0. The result is


v jx���v jy���vix�0���iy
s ��� + a/2 − yi����� . �30�

If the probability of any given configuration at t=� in a
shifted cell containing particle i is independent of 
, the av-
erage over the shift at t=� factorizes. This is, in fact, the case
since the average in �30� entails an integration over the initial
particle coordinates and velocities at t=0. In this case, the
average over 
 can be performed; since 
�iy

s ���+a /2
−yi�����
 vanishes, the result of this averaging is zero. An
alternative, more detailed discussion of this proof is given in
the Appendix.

The argument for general m and n is similar. Analogous
reasoning can be used to show that correlations such as


vix�0�v jx�n��Biy�0�Bjy�n��� = 
vix�0�v jx�n���
Biy�0�Bjy�n���
�31�

factorize for arbitrary n.
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B. Autocorrelation of B’s

It is straightforward to evaluate equal-time correlation
functions of the B variables. Using the results derived in the
Appendix and Eq. �36� of Ref. �9�, one has


Bix
2 �0�� = a2/3 and 
Bix�0�Bjx�0�� = a2/6, for i � j .

�32�

Correlation functions such as 
Bix�0�Bix���� can be evalu-
ated as follows. Take 0�xi�0��a, ��ix���ix�0�=ma, and
��ix���=na. Here and in the following expressions, the argu-
ment �0� will be omitted for clarity. Averaging over the ran-
dom shift 
 at t=2�


Bix�0�Bix���� = − 
��m + 1/2�a − xi�������ix + ��ix
s �− ��

− ��ix
s − �vix�� + 
��ix

s ���ix + ��ix
s �− ��

− ��ix
s − �vix�� . �33�

Since �m+1/2�a−xi��� does not depend on random shifts at
time 0 and �, the average over 
0 and 
� in the first term on
the right-hand side of Eq. �33� at fixed xi�0� and vix�0� van-
ishes, so that


Bix�0�Bix���� = − 
���ix
s �2� + 
��ix

s ���ix + ��ix
s �− �� − �vix�� .

�34�

Averaging the second term on the right-hand side of this
equation over 
0 and 
�, one finds


��ix
s ���ix + ��ix

s �− �� − �vix��

=
1

a
�

0

a

dxi �
m=−�

� �
�ma−xi�/�

��m+1�a−xi�/�

��m + 1/2�a − xi − �vix�2

�w�vix�dvix. �35�

Comparing with Eqs. �18� and �32� of Ref. �9�, it can be
shown that �35� is equal to −
���ix�2�+2
��ix��ix

s �+�2

+a2 /12=a2 /12, where the last equality follows from


��ix��ix
s � =

1

2
�
��ix

2 � − �2� , �36�

given as Eq. �36� in Ref. �9�.
Finally, using �A3�


Bix�0�Bix���� = − a2/6. �37�

The average 
Bix�0�Bjx���� can be evaluated in a similar fash-
ion. Take m0a�xi�0�� �m0+1�a, n0a�xj�0�� �n0+1�a,
��ix�0�=m1a, �� jx�0�=n1a, ��ix���=m2a and �� jx���=n2a.
Averaging over 
2�, one has


Bix�0�Bjx���� = − 
��n0 + n1 + 1/2�a − xj�������ix + ��ix
s �− ��

− ��ix
s − �vix�� + 
�� jx

s ���ix + ��ix
s �− ��

− ��ix
s − �vix�� . �38�

Again, since �n0+n1+1/2�a−xi��� does not depend on ran-
dom shifts at time 0 and �, the average over 
0 and 
� in the
first term on the right-hand side of Eq. �38� vanishes, so that


Bix�0�Bjx���� = − 
��ix
s �� jx

s � + 
�� jx
s ���ix + ��ix

s �− ��

− �vix�� . �39�

Using Eqs. �B3�, �C1�, �C2�, and �C4� from the Appendix,
we have for i� j


Bix�0�Bjx���� = − a2/12. �40�

All B-correlation functions for time lags greater than � are
zero. To understand this, consider 
Bix�0�Bjx�2���. Averaging
over 
3�


Bix�0�Bjx�2��� = 
�� jx��� − �m + 1/2�a + xj�2���

����ix + ��ix
s �− �� − �vix�� , �41�

where ma is the cell coordinate of particle j at t=2�. The
second term in �41� has no dependence on 
2�, while average
of the first term gives zero. Again, this requires that the prob-
ability of any given configuration in a shifted cell is indepen-
dent of 
2�.

These results can be summarized by the relation


Bi��n��Bj��m��� =
a2

12

���1 + 
ij��2
n,m − 
n,m+1 − 
n,m−1� .

�42�

Figure 1 presents simulation results for 
Biy�0�Biy�t�� in
d=2 for various collision angles � and a range of mean-free
paths. Figure 2 contains corresponding results for

Biy�0�Bjy�t��. In both cases, the agreement with result �42� is
excellent. Simulation results for 
vix�0�vix�t�Biy�0�Biy�t�� as a
function of time are presented in Fig. 3 for a similar range of
parameters; the results are in agreement with the prediction
of Sec. V A that this autocorrelation function factorizes, and
that the resulting B correlations are given by Eq. �42�.

It follows that there are only two—a pure kinetic and a
pure rotational �or collision�—contributions to the transport
coefficients. Relation �42� is of central importance, because
it contains all the geometrical features of the grid that con-
tribute to the transport coefficients, and is independent of
specific collision rules and particle properties. Since the ki-

FIG. 1. 
Biy�0�Biy�t�� as a function of time. Results for
� /a=0.05, 0.10, 0.50, 1.00, and for collision angles �=60°, 90°,
and 120° are plotted, indicating that there is no dependence on the
value of the mean-free path. Time averages over 106 iterations were
used to obtain the data. Parameters: L /a=32 and M =5.
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netic contribution to the stress tensor is symmetric and has
been calculated elsewhere, we concentrate here on the �col-
lisional� contributions arising from B correlations.

C. Viscosities

Explicit expressions for the collisional contributions to
the viscous transport coefficients can be obtained by consid-

ering various choices for k̂ and � and � in Eq. �25� and using

�9�. Taking k̂ in the y direction and �=�=1 yields


rot � 
1
rot + 
2

rot =
1

�NkBT
�
n=0

�

��
i,j


vix�0�Biy�0�vix�t�Biy�n��� .

�43�

Equation �43� is the expression used in Ref. �11� to deter-
mine the collisional contribution to the shear viscosity. 
1

rot

and 
2
rot are the viscosities associated with the symmetric and

the antisymmetric contributions to the matrix of viscous
transport coefficients.

Other choices for k̂ and � and � yield expressions for
other linear combinations of the transport coefficients. In

particular, the choice k̂= �1,0 ,0� and �=�=1 yields

�1 + �d − 2�/d�
1
rot + �rot + �rot

=
1

�NkBT
�
n=0

�

��
i,j


vix�0�Bix�0�vix�t�Bix�n��� . �44�

However, because of �42�, the right-hand side of �44� is
equal to �43�, so that

�1 + �d − 2�/d�
1
rot + �rot + �rot = 
rot. �45�

Finally, for k̂= �1,1 ,0� /�2 and �=1, �=2, one has

��d − 2�/d�
1
rot − 
2

rot + �rot = 0, �46�

since the resulting stress-stress correlation functions are zero.
These results imply that �rot=0, and that the longitudinal
component of �9�, which is the viscous contribution to the
sound attenuation, is 
rot. Finally, using these results in �9�, it
follows that the collision contribution to the macroscopic
stress tensor is

�̂��
rot = �
1

rot + 
2
rot���v� = 
rot��v�, �47�

up to a tensor GJ with vanishing divergence, ��G��=0, which
therefore will not appear in the linearized hydrodynamic
equations. The collisional contribution to the effective shear
viscosity is therefore 
rot, and the viscous contribution to the
sound attenuation is also 
rot, instead of the standard result,
2�d−1�
 /d+�, for simple isotropic fluids. The correspond-
ing hydrodynamic equation for the momentum density is
therefore

	� �v

�t
+ �v · ��v� = − �p + 	�
kin + 
rot��v

+
2 − d

d

kin � �� · v� , �48�

where we have used the fact that the kinetic contribution to
the microscopic stress tensor, �̄kin in �16�, is symmetric, and
�kin=0 �9�. Note that there is no collisional contribution to
the last term in Eq. �48�. For d=2, the viscous contribution to
the sound attenuation coefficient in a simple liquid is 
+�.
The results of the current calculation are consistent with this
result, with 
=
kin+
rot and �=0 �as expected for a fluid
with an ideal gas equation of state�. In d=3, while the shear
viscosity is still given by 
=
kin+
rot, the viscous contribu-
tion to the sound attenuation coefficient is 4
kin /3+
rot, in-
stead of 4�
kin+
rot� /3+�. The sound attenuation coefficient
of the SRD model in three dimensions is therefore slightly
smaller than in a simple liquid. Note, however, that the hy-
drodynamic equations are not affected. Although only certain
linear combinations of the collisional contributions to the
viscous transport coefficients are determined by Eqs.
�43�–�46�, all coefficients in the linearized hydrodynamic
equations are uniquely determined.

Equilibrium measurements of the time-dependent density
correlations �28� in two dimensions yield results for the
sound attenuation coefficient which are in good agreement
with the theoretical predictions. A detailed comparison of

FIG. 2. 
Biy�0�Bjy�t�� as a function of time. Identical results are
obtained for �=0.05, 0.10, 0.50, 1.00 and for collision angles
�=60°, 90°, and 120°. Time averages over 106 iterations were used
to obtain the data. Parameters: L /a=32 and M =5.

FIG. 3. 
vix�0�vix�t�Biy�0�Biy�t�� as a function of time. Identical
results are obtained for �=0.05, 0.10, 0.50, and 1.00. Solid, dotted
and dashed lines correspond to collision angles �=60°, 90°, and
120°, respectively. Time averages over 106 iterations were used to
obtain the data. Parameters: L /a=32 and M =5.
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these simulation results with theory will be presented else-
where �28�. Currently, there are no similar measurements in
three dimensions.

The fact that the entropy of a fluid increases as a result
of irreversible processes leads to certain positivity conditions
on the transport coefficients �29�. SRD obeys an H-theorem
�1,8�, which implies that the entropy production is always
non-negative. In Appendix E, it is shown, using a generali-
zation of an argument from Ref. �29�, that the requirement
of a positive entropy production leads to the conditions

kin+
1

rot�0, 
2
rot�0, and ��0. Note that the result of

Pooley and Yeomans �13� for the collisional stress tensor
�̂��

rot =
rot��v� amounts to assuming 
1
rot=
2

rot=
rot /2 and
�=
rot /d.

VI. EXPLICIT EXPRESSIONS FOR THE COLLISIONAL
CONTRIBUTIONS TO THE TRANSPORT

COEFFICIENTS

A. Viscosities

Using the results of the previous sections, the collisional
contribution to the viscosity can be written as


rot = 
1
rot + 
2

rot =
1

2�NkBT
�
i,j=1

N

�
vix�0�v jx�0��
Biy�0�Bjy�0��

+ 2
vix�0�v jx����
Biy�0�Bjy����� . �49�

It is straightforward to evaluate the various contributions
to the right-hand side of �49�. In particular, note that since
velocity correlation functions only at equal time and for a
time lag of one time step are required, molecular chaos can
be assumed when evaluating these contributions, since it was
shown in Ref. �11� that additional correlation effects only
occur for larger time lags. Using �42�, the first term on the
right-hand side of Eq. �49� reduces to

�
i,j=1

N


Biy�0�Bjy�0��
vix�0�v jx�0��

=
a2

3 �
i


vix
2 �0�� +

a2

6 �
i

�
j�i


vix�0�v jx�0�� . �50�

Momentum conservation, namely �kvkx�0�=0, can be used
to write

�
i

�
j�i


vix�0�v jx�0�� = − �
i


vix
2 �0�� , �51�

so that the right-hand side of �50� reduces to

a2

6 �
i


vix
2 �0�� =

a2

6
NfkBT , �52�

where Nf =N−1, because of momentum conservation. Simi-
larly, using momentum conservation at t=�, the second term
in on the right-hand side of �49� reduces to

�
i,j=1

N


Biy�0�Bjy����
vix�0�v jx���� = −
a2

12�
i


vix�0�vix���� .

�53�

It follows that


rot =
a2

12�
�1 −


vix�0�vix����
kBT

� + O�1/N� . �54�

For d=2, if there are mi particles in the collision cell �i
s���,

the ensemble average of the term in brackets in �54� is

1 −
1

kBT
�
vix�0�vix�����mi

= �1 − 1/mi��1 − cos���� , �55�

where � is the collision angle. In three dimensions, the cor-
responding expression is

1 −
1

kBT
�
vix�0�vix�����mi

=
2

3
�1 − 1/mi��1 − cos���� ,

�56�

for both models A and B. To obtain the final result, we now
need to average over the number of particles, mi, in the col-
lision cell. If the average number of particles per cell is M,
the probability that there are mi particles in cell �i

s is given by
the Poisson distribution Pp�mi ,M�=e−MMmi /mi!. The corre-
sponding �normalized� probability that a given particle, i, is
in a cell containing a total number of particles mi is
miPp�mi ,M� /M. Averaging now over the number of particles
in a cell, we have, finally


rot =
a2

6d�
	M − 1 + e−M

M

�1 − cos���� , �57�

for all the collision models we considered �the standard
model in d=2 and both models A and B in 3D�. Equation
�57� agrees with the result of Refs. �12,13� obtained using a
completely different nonequilibrium approach in shear flow.
Simulation results for the rotational contribution to the vis-
cosity, Eq. �57�, are compared with the theoretical prediction
in Fig. 4 for small M =3, where our earlier approximation �7�
for M �1 would not be accurate. The new expression cor-
rectly describes the limit M→0, where the collisional vis-
cosity should vanish.

B. Thermal diffusivity

The collisional contribution to the thermal diffusivity can

be calculated in a similar fashion. In particular, taking k̂= x̂
in �13� and �14�, and using �23�, we have DT=DT

kin+DT
rot with

DT
kin =

�

cpNkBT2 �
n=0

�

� �
i,j=1

N


�vi
2�0�/2 − kBT��v j

2�n��/2

− kBT�vix�0�v jx�n��� , �58�
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DT
rot =

1

8cp�NkBT2 �
i,j=1

N

�
vi
2�0�v j

2�0��
Bix�0�Bjx�0��

+ 2
vi
2�0�v j

2����
Bix�0�Bjx����� . �59�

The kinetic contributions to the thermal diffusivity were cal-
culated previously in both 2D �9� and 3D �10�. Using the
results presented earlier in this paper, it is straightforward to
evaluate the collisional contribution to the thermal diffusiv-
ity. Just as momentum conservation was used to simplify the
calculation of the collisional contribution to the viscosity,
energy conservation, �k=1

N vk
2=const., and �42� can be used to

show that �59� reduces to

DT
rot =

a2d

24�
�1 −


vi
2�0�vi

2����
d�d + 2��kBT�2� . �60�

For d=2, if there are mi particles in the collision cell
�i

s���, the ensemble average of the term in brackets in �60� is

1 − � 
vi
2�0�vi

2����
8�kBT�2 �

mi

=
1

mi
	1 −

1

mi

�1 − cos���� . �61�

In three dimensions, the corresponding expression is

1 − � 
vi
2�0�vi

2����
15�kBT�2 �

mi

=
8

15mi
	1 −

1

mi

�1 − cos���� ,

�62�

for both models A and B.
Using these results in �60� and averaging over the number

of particles in a cell, assuming again that the probability of
having a given particle, i, is in a cell containing a total num-
ber of particles mi is miPp�mi ,M� /M, where M is the average
number of particles per cell, one finds

DT
rot =

a2

3�d + 2��
1

M�1 − e−M	1 + �
0

M ex − 1

x
dx
�

��1 − cos���� , �63�

——→
large M

a2

3�d + 2��
1

M
	1 + e−M�ln M − 1�

−
1

M
−

1

M2 −
2

M3 − ¯ 
�1 − cos���� , �64�

——→
small M

a2

12�d + 2��	M −
5

9
M2 + ¯ 


��1 − cos���� , �65�

for all models considered. Note that in contrast to the viscos-
ity, the rotational contribution to the thermal diffusivity is
O�1/M� for large M. Simulation results for the collisional
contribution to thermal diffusivity are compared with �63� in
Fig. 5. This contribution to the thermal diffusivity, which is
not negligible for small M �such as M =3 in Fig. 5�, was not
discussed in Refs. �12,13�.

A comparison of the relative size of the rotational and
kinetic contributions to DT is given in Fig. 6. Since DT

rot is
independent of temperature while DT

kin increases linearly with
temperature, there is a temperature �or mean-free path
�=��kBT� at which both contributions are equal. The ratio
� /a of this specific mean free path to the cell size a is plotted
as a function of the rotation angle �. Results obtained using
Eq. �63�, Eq. �89� of Ref. �9�, and Eq. �48� in Ref. �10� are
presented for M =5 in both two �dashed line� and three di-
mensions �solid line�. In two dimensions, DT

rot can be larger
than DT

kin already at mean-free paths as large as 0.25a for
large �. In d=3, the rotational contribution is slightly less
important.

VII. CONCLUSION

It has been shown that the random shift procedure intro-
duced in Refs. �7,8� not only restores Galilean invariance,
but also enables an exact evaluation of the collisional contri-
bution to the transport coefficients. The current approach jus-
tifies in detail several assumptions used in the nonequilib-
rium calculations of Refs. �12,13�, and was used to

FIG. 4. The normalized collisional contribution to the kinematic
viscosity, 
rot� /a2, as a function of collision angle �. The solid line
is the theoretical prediction �57�. The data were obtained by time
averaging over 360 000 iterations. Parameters: L /a=16, � /a=0.1,
M =3, and �=1.

FIG. 5. The normalized collisional contribution to the thermal
diffusivity, DT

rot� /a2, as a function of collision angle �. The solid
line is the theoretical prediction �63�. The data were obtained
by time averaging over 360 000 iterations. Parameters: L /a=16,
� /a=0.1, M =3, and �=1.
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determine the collisional contribution to the shear viscosity,
the bulk viscosity, and the thermal diffusivity.

A detailed analysis of the consequences of the fact that
SRD collisions do not conserve angular momentum was also
presented. It was shown that, while the long-time, long-
length-scale hydrodynamics of the model is not affected, it
does lead to small changes in the viscous contribution to the
sound attenuation coefficient. Although it has been pointed
out previously �13� that the collisional contribution to the
macroscopic viscous stress tensor is not symmetric, our in-
terpretation of the consequences of this fact is different from
that of Ref. �13�. In particular, the resulting slight modifica-
tion of the coefficient of sound attenuation has no conse-
quences for most practical applications, such as those in
Refs. �16,19�, and does not restrict the validity of the model.
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APPENDIX A: Š„��ix
s
…

2
‹

If Xs=xi+
, with 0�xi�a


���ix
s �X�
 = �

−a/2

a/2

���− Xs� − ��Xs − a��d
 , �A1�

and


����ix
s �2�X�
 = a�

−a/2

a/2

���− Xs� + ��Xs − a��d
 . �A2�

Integrating over X, we have


���ix
s �2� = �

0

a/2

d
�
a−


a

dxi + �
−a/2

0

d
�
0

−


dxi = a2/4.

�A3�

APPENDIX B: Š��ix
s ��jx

s
‹, iÅ j


��ix
s �� jx

s � =
1

a
�

−a/2

a/2

d
��
0

a

dxi���− xi − 
�

− ��xi + 
 − a���2

. �B1�

The integral over xi is

�
0

a

dxi���− xi − 
� − ��xi + 
 − a�� = 
��
� − 
��− 
� ,

�B2�

so that


��ix
s �� jx

s � =
1

a
�

−a/2

a/2

d
�
2��
� + 
2��− 
�� = a2/12.

�B3�

APPENDIX C: VARIOUS OTHER CORRELATIONS

There are a number of other useful relations which are
required to evaluate the B correlations which can be easily
evaluated using the same techniques. They include


��ix
s vix� = 
��ix

s �− ��vix� = 0, �C1�

and


��ix�� jx� = 
��ix�� jx
s � = 0, �C2�


��ix
s v jx� = 
��ix

s �− ��v jx� = 0, �C3�

and


��ix
s �� jx

s �− ��� = 
��ix�� jx
s �− ��� = 0, �C4�

for i� j. Finally


��ix
s �− �����ix�0� − ��ix

s �0��� = − a2/12. �C5�

To show this, assume 0�xi�0��a and na�xi�0�+�vix�0�
� �n+1�a. Averaging first over 
 at time � and then the ran-
dom shift at time t=0, for fixed xi�0� and vix�0�, one finds


��ix
s �− ������ix�0� − ��ix

s �0���xi�0�,X� = 
�a/2 − xi�0���− a/2

+ xi�0� − �vix�0�� . �C6�

The final ensemble average in �C6� reduces to

1

a
�

0

a

dx �
n=−�

�

�a/2 − x��
�na−x�/�

��n+1�a−x�/�

dvx�− a/2 + x + �vx�w�vx�

=
1

a
�

0

a

dx�a/2 − x��
−�

�

dvx�− a/2 + x + �vx�w�vx� , �C7�

where we have dropped the index i and the time argument of

FIG. 6. The specific ratio, � /a, at which DT
kin=DT

rot as a function
of the rotational angle � for M =5 in d=2 �dashed line� and d=3
�solid line�. �=��kBT is the mean-free path, a is the cell size. For
mean-free paths below the curve the rotational contribution to the
thermal diffusivity, DT

rot, is larger than the kinetic part, DT
kin. Theo-

retical expressions given by Eq. �63�, Eq. �89� of Ref. �9�, and Eq.
�48� of Ref. �10� were used.
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x and vx for brevity. The integral over vx can be performed
immediately, and the remaining integral over x gives the re-
sult, −a2 /12.

APPENDIX D: PROOF OF RELATION
Švjx„�…vjy„�…vix„0…Biy„0…‹=0

In order to evaluate this expression, averages over the
random shift at time t=0, 
0��
0x ,
0y�, the shift at time
t=�, 
���
�x ,
�y�, and over the initial positions, ri�0�
= �xi�0� ,yi�0��, and velocities, vi�0� of all particles are re-
quired. Averaging first over 
0, keeping all the other quanti-
ties fixed, yields Eq. �30�. Next, note that �iy

s ��� has an im-
plicit dependence on the initial positions and velocities at
t=0 and 
�. We therefore write

�iy
s ��� = �iy

s ��;
�,�rk�,�vk�� . �D1�

Because of translational symmetry

�iy
s ��;
�,�rk�,�vk�� � �iy

s ��;0,�r̃k�,�vk�� , �D2�

with r̃k=rk+
�. Keeping �r̃k� fixed, the average over 
� in
�30� then become

1

a
�
k=1

N �
−�

�

f��vk��dvk�
−�

�

drk�
−a/2

a/2

v jx���v jy���vix�0���iy
s ���

− yi�0� + a/2 − �viy�0��d
�

=
1

a
�
k=1

N �
−�

�

f��vk��dvk�
−�

�

dr̃k�
−a/2

a/2

v jx���v jy���vix�0�

���iy
s ��� − ỹi�0� + 
� + a/2 − �viy�0��d
�

= �
k=1

N �
−�

�

f��vk��dvk�
−�

�

dr̃kv jx���v jy���vix�0���iy
s ���

− ỹi�0� + a/2 − �viy�0�� , �D3�

where f is the N-particle Boltzmann distribution.
The remaining average over the initial configuration can

be split up into a sum of several terms. Each term corre-
sponds to a situation in which the particle labeled i is re-
stricted at time zero to be in a specific cell �1 together with k1
other particles with given labels, while particle j is likewise
residing only in a given cell �2 together with a set of k2
distinguishable particles. These restrictions are needed in or-
der to have the postcollisional velocities v j��� and the cell
label � jy

s ��� to be independent of the initial positions of the
particles in every term.

We will show now that all these terms will vanish inde-
pendently. Keeping the initial velocities fixed, an average
over ỹi�0� is performed under the condition mentioned
above, i.e., where � jy

s ���=�1. These constraints mean that

ỹi�0� must be in the interval ��1−�viy�0� ,�1+a−�viy�0��.
Since the postcollisional velocities of particle j are not af-
fected by the position ỹi�0�, each of the terms is proportional
to

� f��vi��dvi
N�

�1−viy�0��

�1+a−viy�0�� ��1 +
a

2
− ỹi�0� − �viy�0��dỹi�0�

� a��1 +
a

2
− �viy�0�� − � ỹi�0�2

2
�

�1−�viy�0�

�1+a−�viy�0�

= 0. �D4�

All terms vanish independently, so that

v jx���v jy���vix�0�Biy�0�� is zero. Note that the same argu-
ment applies when �2=�1, i.e., the particles being in the same
cell, for both j� i and j= i.

APPENDIX E: ENTROPY PRODUCTION

The general equation of heat transfer is �29�

	T	 �s

�t
+ v · �s
 = �̂����v� + � · �� � T� , �E1�

where the stress tensor �̂�� is given in Eq. �5�, s is the en-
tropy per unit mass, 	 is the mass density, and � is the ther-
mal conductivity. It is easily verified that �̂����v� can be
written as

�̂����v� =

1

2
	��v� + ��v� −

2

d

����v�
2

+

2

2
�� � v�2

+ ��� · v�2, �E2�

where all three terms are independent, invariant under coor-
dinate transformations, and can vanish independently. Using
�E1� and �E2�, it can be shown �29� that the entropy produc-
tion in a given volume � is

d

dt
�

�

	sdV = �
�
����T�2

T2 +

1

2T
	��v� + ��v� −

2

d

����v�
2

+

2

2T
�� � v�2 +

�

T
�� · v�2�dV . �E3�

The requirement that the entropy production is non-negative
implies that all transport coefficients in �E3� are greater than
or equal to zero, namely


1 � 0, 
2 � 0, � � 0, and � � 0. �E4�

For 
2=0 this condition is identical to the well-known result
discussed in Ref. �29�. For SRD, conditions �E4� reduce to


kin + 
1
rot � 0, 
2

rot � 0, and �rot � 0. �E5�
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